58 research outputs found

    Associations of sex work in a sample of black men who have sex with men

    Get PDF
    Black men who have sex with men (BMSM) occupy a severely marginalized position within society, experiencing high levels of discrimination as a result of their race and sexuality. Research into this population suggests that this social exclusion leaves BMSM susceptible to a variety of interrelated negative health outcomes. As a population they are vulnerable to physical assault, substance/alcohol abuse, depression, unemployment, homelessness, and high rates of HIV infection, all of which are exacerbated by poor access to health care and other social services, and are thus of public health importance. This marginalization leads a disproportionate number of BMSM to turn to sex work to make ends meet and/or to survive. The limited research done into the population suggests that black male sex workers experience similar types of negative health outcomes and comparable inequity in regards to their race and sexuality, but also need to contend with the stigma and illegality associated with engaging in sex work. How this further marginalization translates into the behaviors and health of black male sex workers is poorly understood and demands further research. In this analysis I examined a sample of 1,666 BMSM and compared those who have engaged in sex work (n=94) with those who had not (n=1572). The purpose of this investigation was to understand the associations and health implications involved in black male sex work and if/how they contrasted to a general sample of BMSM. Results from the analysis showed that the sex workers in the sample reported a statistically higher prevalence across every syndemic measure, negative health outcome, and behavioral risk factor except, surprisingly, HIV prevalence. This suggests that behavioral and syndemic risks are not the only contributors to high HIV rates in this sample of BMSM. Although HIV rates did not differ between the two groups, the sex workers did report worryingly high rates of every other negative health outcomes and risk factor. Interventions designed to meet the needs of black male sex workers are crucial for the health of that vulnerable population. Finally, risk factors and syndemic associations traditionally thought to increase HIV rates in a given population did not hold up in this analysis and further research is required to understand what is driving HIV in BMSM

    Tripal, a community update after 10 years of supporting open source, standards-based genetic, genomic and breeding databases

    Get PDF
    Online, open access databases for biological knowledge serve as central repositories for research communities to store, find and analyze integrated, multi-disciplinary datasets. With increasing volumes, complexity and the need to integrate genomic, transcriptomic, metabolomic, proteomic, phenomic and environmental data, community databases face tremendous challenges in ongoing maintenance, expansion and upgrades. A common infrastructure framework using community standards shared by many databases can reduce development burden, provide interoperability, ensure use of common standards and support long-term sustainability. Tripal is a mature, open source platform built to meet this need. With ongoing improvement since its first release in 2009, Tripal provides full functionality for searching, browsing, loading and curating numerous types of data and is a primary technology powering at least 31 publicly available databases spanning plants, animals and human data, primarily storing genomics, genetics and breeding data. Tripal software development is managed by a shared, inclusive governance structure including both project management and advisory teams. Here, we report on the most important and innovative aspects of Tripal after 11 years development, including integration of diverse types of biological data, successful collaborative projects across member databases, and support for implementing FAIR principles

    Single-cell RNA sequencing of neurofibromas reveals a tumor microenvironment favorable for neural regeneration and immune suppression in a neurofibromatosis type 1 porcine model

    Get PDF
    Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1+/CD274+ (PD-L1)+ dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Update on Ebola Treatment Center Costs and Sustainability, United States, 2019

    No full text
    We surveyed 56 Ebola treatment centers (ETCs) in the United States and identified costs incurred since 2014 ($1.76 million/ETC) and sustainability strategies. ETCs reported heavy reliance on federal funding. It is uncertain if, or for how long, ETCs can maintain capabilities should federal funding expire in 2020

    Raw Light-Level Geolocator Data from Golden-Winged Warblers Breeding at Three Sites in North America

    No full text
    The .lig files are comma separated time stamped ASCII data files where each time-stamped record is on a separate line. The header line of each file contains a three-variable string. Its meaning is unclear. The header lines are removed before data analysis. The .lig files can be opened by any text editors. The original data analysis is read into R using a package called "BAStag". The descriptions (e.g. CM05) next to the files represent the individual Golden-winged Warbler from which the data are collected.21 raw light-level data files (.lig) from geolocators (Biotrak, Wareham, UK; model ML6240, 2-min light-sampling regime) deployed on 20 individual Golden-winged Warblers from three breeding locations in North America. These data were collected to provide information on the migration routes and timing, and nonbreeding locations of individuals from these populations to inform conservation and management strategies. These data are being released following the publication of these findings.These data were collected during a project funded by the U.S. Fish and Wildlife Service and U.S. Geological Survey through Research Work Order No. 98 at the U.S. Geological Survey, Minnesota Cooperative Fish and Wildlife Research Unit; by the National Science Foundation through Postdoctoral Research Fellowship No. 1202729 (H. Streby); and by the U.S.D.A Natural Resources Conservation Service in a grant administered by J. Larkin
    corecore